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1. Introduction  

Electricity is a vital factor in society’s welfare. The welfare level is the main factor in daily electricity 
usage [1]–[5]. The utilization depends on the customers’ type; hence, there was a difference in the connected 
power with electricity consumption. Electric supplier should consider the maximum consumption demand 
correctly until a defined period. The connected power to meet 2016 electricity consumption was 67 MW 
while in 2017 was 72 MW. This occurrence shows that consumption increases every year. To fulfill the 
increasing demand, there needs a balance from the production and consumption to equalize the consumption 
with production level [6]. Therefore, there needs an estimation in long-term connected power and electricity 
consumption. 

This estimation was performed to know the target level of connected power and electricity consumption 
accurately to improve the security of energy management, save the operational cost, and safety for production 
and consumption, and as a reference for the Operational Plan [7]–[11]. Based on the reference study, it can be 
concluded that the connected power and electricity consumption have complex factors and non-linear 
characteristics. A good estimation can be obtained using traditional methods. However, the Artificial Neural 
Network (ANN) with feed-forward and feed-backward functions and backpropagation algorithm is a high 
accuracy method with a small error level to find the non-linear connection, economic factor variations, and 
other factors, and adjusting itself on changes that occur [12]–[16]. 

2. Network Architecture Formation  

The network architecture formation was modeled based on the obtained data. Figure 1 illustrates the 

network architecture, while Table I shows the network architecture structure. 
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Fig. 1.   Network Architecture 

 

TABLE I 

NETWORK ARCHITECTURE COMPOSITION 

 

 

 

 

 

After the error value in training was smaller than the targeted error, the final update load during training 
was used in the testing stage to observe whether the load and bias could be used and obtained a good result. 
Table II presents the input and target organization in this research. 

 

TABLE II 

INPUT AND TARGET PATTERNS  

 

 

 

 

 

 

 

 

 

3) Testing Evaluation 
Optimizing the network architecture was conducted by trial and error in the targeted Mean Squared Error 

(MSE) during the training. The Mean Absolute Percentage Error (MAPE) was used o see the precision and 
accuracy of the estimation results on the real data [17]–[19]. Equation 1 shows the MAPE equation. 
 

 

The yi value is the real data, fi is the estimation results, and n is the total data. Table III presents the 
MAPE accuracy level in the estimation. 
 
 
 

Parameter Amount Description 

Input Layer 9 neurons Research Data 

Hidden Layer 9 neurons Research Results 
 

Output Layer 
 

2 neurons 
Estimation of power and energy 
consumption 

Epoch 10,000 Maximum epoch 

Training Function Traingdx - 

Activation Function Binary Sigmoidal - 

Pattern Input Data Target 

1 X1-X5 were the independent 
data from 2008 

2008 dependent data 

2 X1-X5 were the independent 
data from 2009 

2009 dependent data 

. . . 

. . . 

10 X1-X5 were the independent 
data from 2017 

2017 dependent data 
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TABLE III 

MAPE ACCURACY LEVEL IN THE ESTIMATION 

 

MAPE Value Accuracy Level 

≤10% High 
10% < x ≤ 20% Good 
20% < x ≤ 50% Reasonable 
> 50% Low 

3. Method 

.  Research Framework 

This research is quantitative with secondary data analysis. Figure 1 displays a flowchart of the research 
framework.  

Fig. 2.  Research Framework Chart 

 
B.  Research Data 

The information and data in this research consisted of independent and dependent variables. Independent 
variables covered total population, Gross Regional Domestic Product in the regency, total customers, 
produced energy (kWh), remaining energy (kWh), distribution loss %, total transformer, peak load, and load 
factor (%). Meanwhile, the dependent variables covered the consumed energy (kWh) and connected power 
(VA) that also acted as the targeted data. The data was obtained from Srengat Network Service Unit, East 
Java and Blitar Regency Statistics. The data contained yearly data for the last ten years. 

 
C.  Initial Data Processing 

The transformed data were processed using the ANN-backpropagation method in the initial data training 
to adjust the output range into (0.1) using the binary sigmoidal function. If the error were smaller than the 
targeted error, the training would stop. This study used the gradient descent with momentum 
backpropagation. 

 
D. Data Analysis 

Figure 2 presents the steps in estimating the connected power and electricity consumption. 
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Fig. 3.  Estimation Steps of Connected Power and Energy Consumption 

4. Result 

Based on the network architecture composition in Table I and the input and target patterns in Table II, 
this study obtained the best network architecture composition from the training and testing that was 9-9-2 
with the goal of 10

-6
, momentum value of 0.9, and 0.15 learning ratio. Below are the results of this research: 

 

TABLE IV. COMPARISON OF ESTIMATION TRAINING 

 

Year Target Value (VA) JST Value (VA) Error (%) 

2008 32,526,775 32,615,611 0.273 

2009 36,492,585 36,296,363 0.538 

2010 40,458,395 40,667,869 0.518 

2011 44,424,205 44,245,877 0.401 

2012 48,390,015 48,478,252 0.182 

2013 56,558,565 56,552,204 0.011 

2014 60,241,515 60,236,464 0.008 
 

TABLE IV. COMPARISON OF ENERGY CONSUMPTION DATA 

 

Year Target Value(kWh) JST Value (kWh) Error (%) 

2008 45,137,523 45,140,241 0.006 

2009 50,547,295 50,531,405 0.031 

2010 55,957,068 56,002,945 0.082 

2011 61,366,841 61,305,066 0.101 

2012 66,776,613 66,810,018 0.050 

2013 76,358869 76,357,060 0.002 

2014 83,905,547 83,903,324 0.003 
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TABLE V. COMPARISON OF ESTIMATION TESTING RESULTS WITH THE ACTUAL CONNECTED POWER 

Year Target Value (VA) JST Value (VA) Error 
(%) 

2015 64,047,015 68,727,089 7.31 

2016 67,821,615 61,234,043 9.71 
2017 72,597,565 67,791,728 6.62 

MAPE 7.88 
 

 

TABLE VI. COMPARISON OF ESTIMATION RESULTS WITH THE ACTUAL ELECTRICAL ENERGY CONSUMPTION DATA 

 

 
 

 
 

 

 

 

 

 
 

 

Based on the research results, the best result was in 2015 with 0.004422 MSE and 7.88% MAPE for the 
connected power and 11.27% MAPE for the electricity consumption target. The network architecture 
composition recognized the patterns well and accurately delivered the estimation following the MAPE value. 
The estimated connected power had high accuracy, while the estimated electricity consumption had good 
accuracy. Higher accuracy in electricity consumption compared to the connected power was due to the 
various types of customers. Thus, consumption experienced large fluctuations. The changing patterns of the 
community’s behavior followed the external factors (technology, climate, economy, others). Otherwise, the 
low accuracy in the connected power was due to the small demands of new installations each year. A small 
number of industries and low migration levels also influenced the electrical installation. Housing customers 
with middle-lower economical levels dominated the electricity installation in Srengat. Hence, the new 
installations only increased a little. The accuracy level on the consumption target each year could be 
improved by adding external factors and macroeconomic value as the input variables so that the network 
could adjust better. 

5. Conclusion 

Based on the research, the estimated connected power and electricity consumption in PT. PLN (Persero) 

UPJ Srengat, East Java, could be conducted using the Artificial Neural Network (ANN) method with feed-

forward and feed-backward functions from the backpropagation algorithm. The 0.9 momentum value and 

learning speed of 0.15 and network architecture of 9-9-2 was the best network. The smallest MSE proved a 

reasonable error adjustment in this research in 2015 that was 0.04422 and 7.88% MAPE value for the 

connected power, and 11.27% MAPE value for the electricity consumption target. The MSE was the 

indication that the network could adjust well or not. The value below one showed that the network could be 

used as the estimation method and adjust well. The external factors and macroeconomic value were correlated 

and influence the estimation and could be used as the input variables to improve the estimation accuracy. 
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